张正友相机标定。利用opencv实现
单片机源程序如下:
- #include "opencv2/core/core.hpp"
- #include "opencv2/imgproc/imgproc.hpp"
- #include "opencv2/calib3d/calib3d.hpp"
- #include "opencv2/highgui/highgui.hpp"
- #include <iostream>
- #include <fstream>
- #include <iomanip>
- using namespace cv;
- using namespace std;
- void main()
- {
- //ifstream fin("calibdata.txt"); /* 标定所用图像文件的路径 */
- //ofstream fout("caliberation_result.txt"); /* 保存标定结果的文件 */
- // //读取每一幅图像,从中提取出角点,然后对角点进行亚像素精确化
- //cout << "开始提取角点………………";
- //int image_count = 0; /* 图像数量 */
- //Size image_size; /* 图像的尺寸 */
- //Size board_size = Size(4, 6); /* 标定板上每行、列的角点数 */
- //vector<Point2f> image_points_buf; /* 缓存每幅图像上检测到的角点 */
- //vector<vector<Point2f>> image_points_seq; /* 保存检测到的所有角点 */
- //string filename;
- //int count = -1;//用于存储角点个数。
- //while (getline(fin, filename))
- //{
- // image_count++;
- // // 用于观察检验输出
- // cout << "image_count = " << image_count << endl;
- // /* 输出检验*/
- // cout << "-->count = " << count;
- // Mat imageInput = imread(filename);
- ofstream fout("caliberation_result.txt"); /* 保存标定结果的文件 */
- cv::namedWindow("Image");
- cv::Mat imageInput;
- std::vector<std::string> filelist;//存放标定图片路径
- int image_count = 0; /* 图像数量 */
- Size image_size; /* 图像的尺寸 */
- Size board_size = Size(4, 6); /* 标定板上每行、列的角点数 */
- vector<Point2f> image_points_buf; /* 缓存每幅图像上检测到的角点 */
- vector<vector<Point2f>> image_points_seq; /* 保存检测到的所有角点 */
- int count = -1;//用于存储角点个数。
- //生成路径,此处表示图片放在工程根目录下的chessboards文件夹
- for (int i = 1; i <= 21; i++)
- {
- std::stringstream str;//setw(int n)用来控制输出间隔
- str << "chessboards/chessboard" << std::setw(2) << std::setfill('0') << i << ".jpg";//图片的相对路径
- std::cout << str.str() << std::endl;
- filelist.push_back(str.str());
- imageInput = cv::imread(str.str());
- cv::imshow("Image", imageInput);
- //if (image_count == 1) //读入第一张图片时获取图像宽高信息
- //{
- // image_size.width = imageInput.cols;
- // image_size.height = imageInput.rows;
- // cout << "image_size.width = " << image_size.width << endl;
- // cout << "image_size.height = " << image_size.height << endl;
- //}
- /* 提取角点 */
- //if (0 == findChessboardCorners(imageInput, board_size, image_points_buf))
- //{
- // cout << "can not find chessboard corners!\n"; //找不到角点
- // exit(1);
- //}
- //else
- //{
- findChessboardCorners(imageInput, board_size, image_points_buf);
- Mat view_gray;
- cvtColor(imageInput, view_gray, CV_RGB2GRAY);
- findChessboardCorners(imageInput, board_size, image_points_buf);
- /* 亚像素精确化 */
- find4QuadCornerSubpix(view_gray, image_points_buf, Size(5, 5)); //对粗提取的角点进行精确化
- //cornerSubPix(view_gray,image_points_buf,Size(5,5),Size(-1,-1),TermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,0.1));
- image_points_seq.push_back(image_points_buf); //保存亚像素角点
- /* 在图像上显示角点位置 */
- drawChessboardCorners(view_gray, board_size, image_points_buf, false); //用于在图片中标记角点
- imshow("Camera Calibration", view_gray);//显示图片
- waitKey(200);//暂停0.5S
-
- }
-
- int total = image_points_seq.size();
- cout << "total = " << total << endl;
- int CornerNum = board_size.width*board_size.height; //每张图片上总的角点数
- for (int ii = 0; ii<total; ii++)
- {
- if (0 == ii%CornerNum)// 24 是每幅图片的角点个数。此判断语句是为了输出 图片号,便于控制台观看
- {
- int i = -1;
- i = ii / CornerNum;
- int j = i + 1;
- cout << "--> 第 " << j << "图片的数据 --> : " << endl;
- }
- if (0 == ii % 3) // 此判断语句,格式化输出,便于控制台查看
- {
- cout << endl;
- }
- else
- {
- cout.width(10);
- }
- //输出所有的角点
- cout << " -->" << image_points_seq[ii][0].x;
- cout << " -->" << image_points_seq[ii][0].y;
- }
- cout << "角点提取完成!\n";
- //以下是摄像机标定
- cout << "开始标定………………";
- /*棋盘三维信息*/
- Size square_size = Size(10, 10); /* 实际测量得到的标定板上每个棋盘格的大小 */
- vector<vector<Point3f>> object_points; /* 保存标定板上角点的三维坐标 */
- /*内外参数*/
- Mat cameraMatrix = Mat(3, 3, CV_32FC1, Scalar::all(0)); /* 摄像机内参数矩阵 */
- vector<int> point_counts; // 每幅图像中角点的数量
- Mat distCoeffs = Mat(1, 5, CV_32FC1, Scalar::all(0)); /* 摄像机的5个畸变系数:k1,k2,p1,p2,k3 */
- vector<Mat> tvecsMat; /* 每幅图像的旋转向量 */
- vector<Mat> rvecsMat; /* 每幅图像的平移向量 */
- /* 初始化标定板上角点的三维坐标 */
- int i, j, t;
- for (t = 0; t<image_count; t++)
- {
- vector<Point3f> tempPointSet;
- for (i = 0; i<board_size.height; i++)
- {
- for (j = 0; j<board_size.width; j++)
- {
- Point3f realPoint;
- /* 假设标定板放在世界坐标系中z=0的平面上 */
- realPoint.x = i*square_size.width;
- realPoint.y = j*square_size.height;
- realPoint.z = 0;
- tempPointSet.push_back(realPoint);
- }
- }
- object_points.push_back(tempPointSet);
- }
- /* 初始化每幅图像中的角点数量,假定每幅图像中都可以看到完整的标定板 */
- for (i = 0; i<image_count; i++)
- {
- point_counts.push_back(board_size.width*board_size.height);
- }
- /* 开始标定 */
- calibrateCamera(object_points, image_points_seq, image_size, cameraMatrix, distCoeffs, rvecsMat, tvecsMat, 0);
- cout << "标定完成!\n";
- //对标定结果进行评价
- cout << "开始评价标定结果………………\n";
- double total_err = 0.0; /* 所有图像的平均误差的总和 */
- double err = 0.0; /* 每幅图像的平均误差 */
- vector<Point2f> image_points2; /* 保存重新计算得到的投影点 */
- cout << "\t每幅图像的标定误差:\n";
- fout << "每幅图像的标定误差:\n";
- for (i = 0; i<image_count; i++)
- {
- vector<Point3f> tempPointSet = object_points[i];
- /* 通过得到的摄像机内外参数,对空间的三维点进行重新投影计算,得到新的投影点 */
- projectPoints(tempPointSet, rvecsMat[i], tvecsMat[i], cameraMatrix, distCoeffs, image_points2);
- /* 计算新的投影点和旧的投影点之间的误差*/
- vector<Point2f> tempImagePoint = image_points_seq[i];
- Mat tempImagePointMat = Mat(1, tempImagePoint.size(), CV_32FC2);
- Mat image_points2Mat = Mat(1, image_points2.size(), CV_32FC2);
- for (int j = 0; j < tempImagePoint.size(); j++)
- {
- image_points2Mat.at<Vec2f>(0, j) = Vec2f(image_points2[j].x, image_points2[j].y);
- tempImagePointMat.at<Vec2f>(0, j) = Vec2f(tempImagePoint[j].x, tempImagePoint[j].y);
- }
- err = norm(image_points2Mat, tempImagePointMat, NORM_L2);
- total_err += err /= point_counts[i];
- std::cout << "第" << i + 1 << "幅图像的平均误差:" << err << "像素" << endl;
- fout << "第" << i + 1 << "幅图像的平均误差:" << err << "像素" << endl;
- }
- std::cout << "总体平均误差:" << total_err / image_count << "像素" << endl;
- fout << "总体平均误差:" << total_err / image_count << "像素" << endl << endl;
- std::cout << "评价完成!" << endl;
- //保存定标结果
- std::cout << "开始保存定标结果………………" << endl;
- Mat rotation_matrix = Mat(3, 3, CV_32FC1, Scalar::all(0)); /* 保存每幅图像的旋转矩阵 */
- fout << "相机内参数矩阵:" << endl;
- fout << cameraMatrix << endl << endl;
- fout << "畸变系数:\n";
- fout << distCoeffs << endl << endl << endl;
- for (int i = 0; i<image_count; i++)
- {
- fout << "第" << i + 1 << "幅图像的旋转向量:" << endl;
- fout << tvecsMat[i] << endl;
- /* 将旋转向量转换为相对应的旋转矩阵 */
- Rodrigues(tvecsMat[i], rotation_matrix);
- fout << "第" << i + 1 << "幅图像的旋转矩阵:" << endl;
- fout << rotation_matrix << endl;
- fout << "第" << i + 1 << "幅图像的平移向量:" << endl;
- fout << rvecsMat[i] << endl << endl;
- }
- std::cout << "完成保存" << endl;
- fout << endl;
- /************************************************************************
- 显示定标结果
- *************************************************************************/
- Mat mapx = Mat(image_size, CV_32FC1);
- Mat mapy = Mat(image_size, CV_32FC1);
- Mat R = Mat::eye(3, 3, CV_32F);
- std::cout << "保存矫正图像" << endl;
- string imageFileName;
- std::stringstream StrStm;
- for (int i = 0; i != image_count; i++)
- {
- std::cout << "Frame #" << i + 1 << "..." << endl;
- initUndistortRectifyMap(cameraMatrix, distCoeffs, R, cameraMatrix, image_size, CV_32FC1, mapx, mapy);
- StrStm.clear();
- imageFileName.clear();
- string filePath = "chess";
- StrStm << i + 1;
- StrStm >> imageFileName;
- filePath += imageFileName;
- filePath += ".bmp";
- Mat imageSource = imread(filePath);
- Mat newimage = imageSource.clone();
- //另一种不需要转换矩阵的方式
- //undistort(imageSource,newimage,cameraMatrix,distCoeffs);
- remap(imageSource, newimage, mapx, mapy, INTER_LINEAR);
- StrStm.clear();
- filePath.clear();
- StrStm << i + 1;
- StrStm >> imageFileName;
- imageFileName += "_d.jpg";
- imwrite(imageFileName, newimage);
- }
- std::cout << "保存结束" << endl;
- return;
- }
复制代码
所有资料51hei提供下载:
张正友相机标定.zip
(6.57 MB, 下载次数: 28)
|