蚁群优化算法源代码1、蚁群算法的优化计算-旅行商问题(TSP)优化-MATLAB源代码; 2、基于蚁群算法的二维路径规划算法-MATLAB源代码; 3、基于蚁群算法的三维路径规划算法-MATLAB源代码;
matlab源程序如下:
- %% 该函数用于演示基于蚁群算法的三维路径规划算法
- %% 清空环境
- clc
- clear
- %% 数据初始化
- %下载数据
- load HeightData HeightData
- %网格划分
- LevelGrid=10;
- PortGrid=21;
- %起点终点网格点
- starty=10;starth=4;
- endy=8;endh=5;
- m=1;
- %算法参数
- PopNumber=10; %种群个数
- BestFitness=[]; %最佳个体
- %初始信息素
- pheromone=ones(21,21,21);
- %% 初始搜索路径
- [path,pheromone]=searchpath(PopNumber,LevelGrid,PortGrid,pheromone, ...
- HeightData,starty,starth,endy,endh);
- fitness=CacuFit(path); %适应度计算
- [bestfitness,bestindex]=min(fitness); %最佳适应度
- bestpath=path(bestindex,:); %最佳路径
- BestFitness=[BestFitness;bestfitness]; %适应度值记录
-
- %% 信息素更新
- rou=0.2;
- cfit=100/bestfitness;
- for i=2:PortGrid-1
- pheromone(i,bestpath(i*2-1),bestpath(i*2))= ...
- (1-rou)*pheromone(i,bestpath(i*2-1),bestpath(i*2))+rou*cfit;
- end
-
- %% 循环寻找最优路径
- for kk=1:100
-
- %% 路径搜索
- [path,pheromone]=searchpath(PopNumber,LevelGrid,PortGrid,...
- pheromone,HeightData,starty,starth,endy,endh);
-
- %% 适应度值计算更新
- fitness=CacuFit(path);
- [newbestfitness,newbestindex]=min(fitness);
- if newbestfitness<bestfitness
- bestfitness=newbestfitness;
- bestpath=path(newbestindex,:);
- end
- BestFitness=[BestFitness;bestfitness];
-
- %% 更新信息素
- cfit=100/bestfitness;
- for i=2:PortGrid-1
- pheromone(i,bestpath(i*2-1),bestpath(i*2))=(1-rou)* ...
- pheromone(i,bestpath(i*2-1),bestpath(i*2))+rou*cfit;
- end
-
- end
- %% 最佳路径
- for i=1:21
- a(i,1)=bestpath(i*2-1);
- a(i,2)=bestpath(i*2);
- end
- figure(1)
- x=1:21;
- y=1:21;
- [x1,y1]=meshgrid(x,y);
- mesh(x1,y1,HeightData)
- axis([1,21,1,21,0,2000])
- hold on
- k=1:21;
- plot3(k(1)',a(1,1)',a(1,2)'*200,'--o','LineWidth',2,...
- 'MarkerEdgeColor','k',...
- 'MarkerFaceColor','g',...
- 'MarkerSize',10)
- plot3(k(21)',a(21,1)',a(21,2)'*200,'--o','LineWidth',2,...
- 'MarkerEdgeColor','k',...
- 'MarkerFaceColor','g',...
- 'MarkerSize',10)
- text(k(1)',a(1,1)',a(1,2)'*200,'S');
- text(k(21)',a(21,1)',a(21,2)'*200,'T');
- xlabel('km','fontsize',12);
- ylabel('km','fontsize',12);
- zlabel('m','fontsize',12);
- title('三维路径规划空间','fontsize',12)
- set(gcf, 'Renderer', 'ZBuffer')
- hold on
- plot3(k',a(:,1)',a(:,2)'*200,'--o')
- %% 适应度变化
- figure(2)
- plot(BestFitness)
- title('最佳个体适应度变化趋势')
- xlabel('迭代次数')
- ylabel('适应度值')
复制代码
所有资料51hei提供下载:
蚁群优化算法源代码1、蚁群算法的优化计算-旅行商问题(TSP)优化-MATLAB源代码; 2、.rar
(11.71 KB, 下载次数: 45)
|