F28335的svpwm的实现:已经调试,晶振是20MHz
- // TI File $Revision: /main/8 $
- // Checkin $Date: August 10, 2007 09:04:53 $
- //###########################################################################
- //
- // FILE: Example_2833xEPwm3UpAQ.c
- //
- // TITLE: Action Qualifier Module Upcount mode.
- //
- // ASSUMPTIONS:
- //
- // This program requires the DSP2833x header files.
- //
- // Monitor the ePWM1 - ePWM3 pins on a oscilloscope as
- // described below.
- //
- // EPWM1A is on GPIO0
- // EPWM1B is on GPIO1
- //
- // EPWM2A is on GPIO2
- // EPWM2B is on GPIO3
- //
- // EPWM3A is on GPIO4
- // EPWM3B is on GPIO5
- //
- // As supplied, this project is configured for "boot to SARAM"
- // operation. The 2833x Boot Mode table is shown below.
- // For information on configuring the boot mode of an eZdsp,
- // please refer to the documentation included with the eZdsp,
- //
- // $Boot_Table:
- //
- // GPIO87 GPIO86 GPIO85 GPIO84
- // XA15 XA14 XA13 XA12
- // PU PU PU PU
- // ==========================================
- // 1 1 1 1 Jump to Flash
- // 1 1 1 0 SCI-A boot
- // 1 1 0 1 SPI-A boot
- // 1 1 0 0 I2C-A boot
- // 1 0 1 1 eCAN-A boot
- // 1 0 1 0 McBSP-A boot
- // 1 0 0 1 Jump to XINTF x16
- // 1 0 0 0 Jump to XINTF x32
- // 0 1 1 1 Jump to OTP
- // 0 1 1 0 Parallel GPIO I/O boot
- // 0 1 0 1 Parallel XINTF boot
- // 0 1 0 0 Jump to SARAM <- "boot to SARAM"
- // 0 0 1 1 Branch to check boot mode
- // 0 0 1 0 Boot to flash, bypass ADC cal
- // 0 0 0 1 Boot to SARAM, bypass ADC cal
- // 0 0 0 0 Boot to SCI-A, bypass ADC cal
- // Boot_Table_End$
- //
- // DESCRIPTION:
- //
- // This example configures ePWM1, ePWM2, ePWM3 to produce an
- // waveform with independant modulation on EPWMxA and
- // EPWMxB.
- //
- // The compare values CMPA and CMPB are modified within the ePWM's ISR
- //
- // The TB counter is in upmode for this example.
- //
- // View the EPWM1A/B, EPWM2A/B and EPWM3A/B waveforms
- // via an oscilloscope
- //
- //
- //###########################################################################
- // $TI Release: DSP2833x Header Files V1.01 $
- // $Release Date: September 26, 2007 $
- //###########################################################################
- #include "DSP2833x_Device.h" // DSP2833x Headerfile Include File
- #include "DSP2833x_Examples.h" // DSP2833x Examples Include File
- #include "math.h"
- #include "IQmathLib.h"
- typedef struct
- {
- float ds;
- float qs;
- float ang;
- float de;
- float qe;
- }IPARK;
- IPARK ipark1={0,0,0,0.3,0.4};
- IPARK *v=&ipark1;
- // Prototype statements for functions found within this file.
- void InitEPwm1Example(void);
- void InitEPwm2Example(void);
- void InitEPwm3Example(void);
- interrupt void epwm1_isr(void);
- void ipark(IPARK *v);
- void svgen(IPARK *v);
- // Configure the period for each timer
- #define PRD 7500 // Period register
- #define PI 3.1415926
- float tmr1,tmr2,tmr3;
- void main(void)
- {
- // Step 1. Initialize System Control:
- // PLL, WatchDog, enable Peripheral Clocks
- // This example function is found in the DSP2833x_SysCtrl.c file.
- InitSysCtrl();
- // Step 2. Initalize GPIO:
- // This example function is found in the DSP2833x_Gpio.c file and
- // illustrates how to set the GPIO to it's default state.
- // InitGpio(); // Skipped for this example
- // For this case just init GPIO pins for ePWM1, ePWM2, ePWM3
- // These functions are in the DSP2833x_EPwm.c file
- InitEPwm1Gpio();
- InitEPwm2Gpio();
- InitEPwm3Gpio();
- // Step 3. Clear all interrupts and initialize PIE vector table:
- // Disable CPU interrupts
- DINT;
- // Initialize the PIE control registers to their default state.
- // The default state is all PIE interrupts disabled and flags
- // are cleared.
- // This function is found in the DSP2833x_PieCtrl.c file.
- InitPieCtrl();
- // Disable CPU interrupts and clear all CPU interrupt flags:
- IER = 0x0000;
- IFR = 0x0000;
- // Initialize the PIE vector table with pointers to the shell Interrupt
- // Service Routines (ISR).
- // This will populate the entire table, even if the interrupt
- // is not used in this example. This is useful for debug purposes.
- // The shell ISR routines are found in DSP2833x_DefaultIsr.c.
- // This function is found in DSP2833x_PieVect.c.
- InitPieVectTable();
- // Interrupts that are used in this example are re-mapped to
- // ISR functions found within this file.
- EALLOW; // This is needed to write to EALLOW protected registers
- PieVectTable.EPWM1_INT = &epwm1_isr;
-
- EDIS; // This is needed to disable write to EALLOW protected registers
- // Step 4. Initialize all the Device Peripherals:
- // This function is found in DSP2833x_InitPeripherals.c
- // InitPeripherals(); // Not required for this example
- // For this example, only initialize the ePWM
- EALLOW;
- SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0;
- EDIS;
- InitEPwm1Example();
- InitEPwm2Example();
- InitEPwm3Example();
- EALLOW;
- SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1;
- EDIS;
- // Step 5. User specific code, enable interrupts:
- // Enable CPU INT3 which is connected to EPWM1-3 INT:
- IER |= M_INT3;
- // Enable EPWM INTn in the PIE: Group 3 interrupt 1-3
- PieCtrlRegs.PIEIER3.bit.INTx1 = 1;
- // Enable global Interrupts and higher priority real-time debug events:
- EINT; // Enable Global interrupt INTM
- ERTM; // Enable Global realtime interrupt DBGM
- // Step 6. IDLE loop. Just sit and loop forever (optional):
- for(;;)
- {
- asm(" NOP");
- }
- }
- interrupt void epwm1_isr(void)
- {
- // Update the CMPA and CMPB values
- svgen(v);
- EPwm1Regs.CMPA.half.CMPA=tmr1;
- EPwm2Regs.CMPA.half.CMPA=tmr2;
- EPwm3Regs.CMPA.half.CMPA=tmr3;
- EPwm1Regs.CMPB=tmr1;
- EPwm2Regs.CMPB=tmr2;
- EPwm3Regs.CMPB=tmr3;
-
- // Clear INT flag for this timer
- EPwm1Regs.ETCLR.bit.INT = 1;
- // Acknowledge this interrupt to receive more interrupts from group 3
- PieCtrlRegs.PIEACK.all = PIEACK_GROUP3;
- }
- void ipark(IPARK *v)
- {
-
- float ang;
-
- ang=(v->ang/360)*2*PI;
- v->ds=v->de*cos(ang)-v->qe*sin(ang);
- v->qs=v->qe*cos(ang)+v->de*sin(ang);
- }
- void svgen(IPARK *v)
- {
- _iq Va,Vb,Vc,t1,t2,Ta,Tb,Tc;
- Uint32 sector=0;
- ipark(v);
- Va=v->qs;
- Vb=_IQmpy(_IQ(-0.5),v->qs)+_IQmpy(_IQ(0.8660254),v->ds);
- Vc=_IQmpy(_IQ(-0.5),v->qs)-_IQmpy(_IQ(0.8660254),v->ds);
- if(Va>_IQ(0))
- sector=1;
- if(Vb>_IQ(0))
- sector=sector+2;
- if(Vc>_IQ(0))
- sector=sector+4;
-
- Va=v->qs;
- Vb=_IQmpy(_IQ(0.5),v->qs)+_IQmpy(_IQ(0.8660254),v->ds);
- Vc=_IQmpy(_IQ(0.5),v->qs)-_IQmpy(_IQ(0.8660254),v->ds);
- if(sector==0)
- {
- tmr1=_IQ(0.5);
- tmr2=_IQ(0.5);
- tmr3=_IQ(0.5);
- }
- if(sector==1)
- {
- t1=Vc;
- t2=Vb;
- Tb=_IQmpy(_IQ(0.25),(_IQ(1)-t1-t2));
- Ta=Tb+_IQmpy(_IQ(0.5),t1);
- Tc=Ta+_IQmpy(_IQ(0.5),t2);
- }
- if(sector==2)
- {
- t1=Vb;
- t2=-Va;
- Ta=_IQmpy(_IQ(0.25),(_IQ(1)-t1-t2));
- Tc=Ta+_IQmpy(_IQ(0.5),t1);
- Tb=Tc+_IQmpy(_IQ(0.5),t2);
- }
- if(sector==3)
- {
- t1=-Vc;
- t2=Va;
- Ta=_IQmpy(_IQ(0.25),(_IQ(1)-t1-t2));
- Tb=Ta+_IQmpy(_IQ(0.5),t1);
- Tc=Tb+_IQmpy(_IQ(0.5),t2);
- }
- if(sector==4)
- {
- t1=-Va;
- t2=Vc;
- Tc=_IQmpy(_IQ(0.25),(_IQ(1)-t1-t2));
- Tb=Tc+_IQmpy(_IQ(0.5),t1);
- Ta=Tb+_IQmpy(_IQ(0.5),t2);
- }
- if(sector==5)
- {
- t1=Va;
- t2=-Vb;
- Tb=_IQmpy(_IQ(0.25),(_IQ(1)-t1-t2));
- Tc=Tb+_IQmpy(_IQ(0.5),t1);
- Ta=Tc+_IQmpy(_IQ(0.5),t2);
- }
- if(sector==6)
- {
- t1=-Vb;
- t2=-Vc;
- Tc=_IQmpy(_IQ(0.25),(_IQ(1)-t1-t2));
- Ta=Tc+_IQmpy(_IQ(0.5),t1);
- Tb=Ta+_IQmpy(_IQ(0.5),t2);
- }
- tmr1=Ta;
- tmr2=Tb;
- tmr3=Tc;
- }
- void InitEPwm1Example()
- {
- // Setup TBCLK
- EPwm1Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Count up
- EPwm1Regs.TBPRD = PRD; // Set timer period
- EPwm1Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Disable phase loading
- EPwm1Regs.TBPHS.half.TBPHS = 0x0000; // Phase is 0
- EPwm1Regs.TBCTR = 0x0000; // Clear counter
- EPwm1Regs.TBCTL.bit.HSPCLKDIV = TB_DIV2; // Clock ratio to SYSCLKOUT
- EPwm1Regs.TBCTL.bit.CLKDIV = TB_DIV2;
- // Setup shadow register load on ZERO
- EPwm1Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
- EPwm1Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
- EPwm1Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;
- EPwm1Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;
- // Set Compare values
- EPwm1Regs.CMPA.half.CMPA = 1875; // Set compare A value
- EPwm1Regs.CMPB = 1875; // Set Compare B value
- // Set actions
- EPwm1Regs.AQCTLA.bit.ZRO = AQ_CLEAR; // Set PWM1A on Zero
- EPwm1Regs.AQCTLA.bit.CAU = AQ_TOGGLE; // Clear PWM1A on event A, up count
- EPwm1Regs.AQCTLB.bit.ZRO = AQ_SET; // Set PWM1B on Zero
- EPwm1Regs.AQCTLB.bit.CBU = AQ_TOGGLE; // Clear PWM1B on event B, up count
- // Interrupt where we will change the Compare Values
- EPwm1Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Select INT on Zero event
- EPwm1Regs.ETSEL.bit.INTEN = 1; // Enable INT
- EPwm1Regs.ETPS.bit.INTPRD = ET_1ST; // Generate INT on 3rd event
- }
- void InitEPwm2Example()
- {
- // Setup TBCLK
- EPwm2Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Count up
- EPwm2Regs.TBPRD = PRD; // Set timer period
- EPwm2Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Disable phase loading
- EPwm2Regs.TBPHS.half.TBPHS = 0x0000; // Phase is 0
- EPwm2Regs.TBCTR = 0x0000; // Clear counter
- EPwm2Regs.TBCTL.bit.HSPCLKDIV = TB_DIV2; // Clock ratio to SYSCLKOUT
- EPwm2Regs.TBCTL.bit.CLKDIV = TB_DIV2;
- // Setup shadow register load on ZERO
- EPwm2Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
- EPwm2Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
- EPwm2Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;
- EPwm2Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;
- // Set Compare values
- EPwm2Regs.CMPA.half.CMPA =1875; // Set compare A value
- EPwm2Regs.CMPB = 1875; // Set Compare B value
- // Set actions
- EPwm2Regs.AQCTLA.bit.ZRO = AQ_CLEAR; // Set PWM1A on Zero
- EPwm2Regs.AQCTLA.bit.CAU = AQ_TOGGLE; // Clear PWM1A on event A, up count
- EPwm2Regs.AQCTLB.bit.ZRO = AQ_SET; // Set PWM1B on Zero
- EPwm2Regs.AQCTLB.bit.CBU = AQ_TOGGLE; // Clear PWM1B on event B, up count
- // Interrupt where we will change the Compare Values
- //EPwm2Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Select INT on Zero event
- EPwm2Regs.ETSEL.bit.INTEN = 0; // Enable INT
- //EPwm2Regs.ETPS.bit.INTPRD = ET_1ST; // Generate INT on 3rd event
-
- }
- void InitEPwm3Example(void)
- {
- // Setup TBCLK
- EPwm3Regs.TBCTL.bit.CTRMODE = TB_COUNT_UPDOWN; // Count up
- EPwm3Regs.TBPRD = PRD; // Set timer period
- EPwm3Regs.TBCTL.bit.PHSEN = TB_DISABLE; // Disable phase loading
- EPwm3Regs.TBPHS.half.TBPHS = 0x0000; // Phase is 0
- EPwm3Regs.TBCTR = 0x0000; // Clear counter
- EPwm3Regs.TBCTL.bit.HSPCLKDIV = TB_DIV1; // Clock ratio to SYSCLKOUT
- EPwm3Regs.TBCTL.bit.CLKDIV = TB_DIV1;
- // Setup shadow register load on ZERO
- EPwm3Regs.CMPCTL.bit.SHDWAMODE = CC_SHADOW;
- EPwm3Regs.CMPCTL.bit.SHDWBMODE = CC_SHADOW;
- EPwm3Regs.CMPCTL.bit.LOADAMODE = CC_CTR_ZERO;
- EPwm3Regs.CMPCTL.bit.LOADBMODE = CC_CTR_ZERO;
- // Set Compare values
- EPwm3Regs.CMPA.half.CMPA = 1875; // Set compare A value
- EPwm3Regs.CMPB = 1875; // Set Compare B value
- // Set Actions
- EPwm3Regs.AQCTLA.bit.ZRO = AQ_CLEAR; // Set PWM1A on Zero
- EPwm3Regs.AQCTLA.bit.CAU = AQ_TOGGLE; // Clear PWM1A on event A, up count
- EPwm3Regs.AQCTLB.bit.ZRO = AQ_SET; // Set PWM1B on Zero
- EPwm3Regs.AQCTLB.bit.CBU = AQ_TOGGLE; // Clear PWM1B on event B, up count
- // Interrupt where we will change the Compare Values
- //EPwm3Regs.ETSEL.bit.INTSEL = ET_CTR_ZERO; // Select INT on Zero event
- EPwm3Regs.ETSEL.bit.INTEN = 0; // Enable INT
- //EPwm3Regs.ETPS.bit.INTPRD = ET_1ST; // Generate INT on 3rd event
-
- }
- //===========================================================================
- // No more.
- //===========================================================================
复制代码
|