1.概述
SVPWM是近年发展的一种比较新颖的控制方法,是由三相功率逆变器的六个功率开关元件组成的特定开关模式产生的脉宽调制波,能够使输出电流波形尽可能接近于理想的正弦波形。空间电压矢量PWM与传统的正弦PWM不同,它是从三相输出电压的整体效果出发,着眼于如何使电机获得理想圆形磁链轨迹。SVPWM技术与SPWM相比较,绕组电流波形的谐波成分小,使得电机转矩脉动降低,旋转磁场更逼近圆形,而且使直流母线电压的利用率有了很大提高,且更易于实现数字化。
2.SVPWM基本原理
SVPWM 的理论基础是平均值等效原理,即在一个开关周期内通过对基本电压矢量加以组合,使其平均值与给定电压矢量相等。
在上图的逆变电路中,设直流母线上的电压为Udc,逆变器输出的三相相电压为UA、UB、UC,其分别施加在空间上互差120度的平面坐标系上,定义这三个电压空间矢量为UA(t)、UB(t)、UC(t),他们方向始终在各自的轴线上,而大小随时间按正弦规律变化,时间相位上互差120度。假设Um为相电压的有效值,f为电源频率,则有:
可见U(t)是一个旋转的空间矢量,它的幅值不变,为相电压峰值,且以角频率ω= 2πf按逆时针方向匀速旋转的空间矢量。而SVPWM算法的目的就是使用三相桥的开关状态把在空间中旋转的U(t)矢量表示出来
由于逆变器三相桥臂共有6个开关管,为了研究各相上下桥臂不同开关组合 时逆变器输出的空间电压矢量,特定义开关函数Sx(x=a、b、c) 为:
(Sa、Sb、Sc)的全部可能组合共有八个,包括 6个非零矢量Ul(001)、U2(010)、U3(011)、U4(100)、U5(101)、U6(110)、和两个零矢量 U0(000)、U7(111),下面以其中一种开关组合为例分析,假设Sx(x=a、b、c)=(100),此时等效电路如图:
因此相电压可以表示为:(相电压是每相相对于电机中间连接点的电压)
同理可得,其他开关状态三相的相电压。另外线电压是两相之间的电压差,如Uab=Ua-Ub。
如前面所说
当开关Sa=1时,UA(t)=Udc;当开关Sb=1时,UB(t)=Udc;当开关Sc=1时,UC(t)=Udc。
因此上式可以写成:
可以看到Uout的模值不变,改变的只是相位。
开关状态与线电压、相电压、Uout列在一起:
把上面的8个电压空间矢量按照Uout的相位关系放在扇区图中:
上图中,6个非零矢量幅值相同,相邻的矢量间隔60度。两个零矢量幅值为零,位于中心。
三相电压给定所合成的电压向量旋转角速度为ω=2πf,则旋转一周所需的时间为T=1/ f;若载波频率是 fs ,则频率比为 R=fs / f。这样将电压旋转平面等切割成R个小增量,亦即设定电压向量每次增量的角度是:γ=2π/ R。
现在假设需要输出一个空间矢量Uref,假设它在第I扇区,我们先把第I扇区单独取出来,然后用和它相邻的两个电压空间矢量来表示它:
得到以 U4、U6、U7 及 U0 合成的 Uref 的时间后,接下来就是如何产生实际的脉宽调制波形。在 SVPWM 调制方案中,零矢量的选择是最具灵活性的,适当选择零矢量,可最大限度地减少开关次数,尽可能避免在负载电流较大的时刻的开关动作,最大限度地减少开关损耗。因此,我们以减少开关次数为目标,将基本矢量作用顺序的分配原则选定为:在每次开关状态转换时,只改变其中一相的开关状态。并且对零矢量在时间上进行了平均分配,以使产生的 PWM 对称,从而有效地降低 PWM 的谐波分量。可以发现当 U4(100)切换至 U0(000)时,只需改变 A 相上下一对切换开关,若由 U4(100)切换至 U7(111)则需改变 B、C 相上下两对切换开关,增加了一倍的切换损失。因此要改变电压向量 U4(100)、U2(010)、U1(001)的大小,需配合零电压向量 U0(000),而要改变 U6(110)、U3(011)、U5(100), 需配合零电压向量 U7(111)。这样通过在不同区间内安排不同的开关切换顺序, 就可以获得对称的输出波形,其它各扇区的开关切换顺序如表 2-2 所示。
因此就可以利用 U4、U6、U7 及 U0 的顺序和时间长短的搭配来表示出Uref了。
以第Ⅰ扇区为例,其所产生的三相波调制波形在一个载波周期时间Ts内如图 2-11 所示,图中电压向量出现的先后顺序为 U0、U4、U6、U7、U6、U4、U0,各电压向量的三相波形则与表 2-2 中的开关表示符号相对应。再下一个 载波周期Ts ,Uref 的角度增加一个γ,利用式(2-33)可以重新计算新的 T0、T4、T6 及 T7 值,得到新的类似图 2-11 的合成三相波形;这样每一个载波周期 TS 就会合成一个新的矢量,随着 θ 的逐渐增大,Uref 将依序进入第Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ区。在电压向量旋转一周期后,就会产生 R 个合成矢量。
因此SVPWM会在每个载波周期进行一次计算。
通过以上 SVPWM 的法则推导分析可知要实现 SVPWM 信号的实时调制, 首先需要知道参考电压矢量 Uref 所在的区间位置,然后利用所在扇区的相邻两电压矢量和适当的零矢量来合成参考电压矢量。
控制系统需要输出的矢量电压信号 Uref,它以某一角频率 ω 在空间逆时针旋转,当旋转到矢量图的某个 60°扇区中时,系统计算该区间所需的基本电压空间矢量,并以此矢量所对应的状态去驱动功率开关元件动作。当控制矢量在空间旋转 360°后,逆变器就能输出一个周期的正弦波电压。
1.合成矢量Uref 所处扇区N 的判断
空间矢量调制的第一步是判断由Uα 和Uβ所决定的空间电压矢量所处的扇区。
假定合成的电压矢量落在第 I 扇区,可知其等价条件如下: 0<arctan(Uβ/ Uα) <60
落在第 I 扇区的充分必要条件为:Ua > 0 ,Uβ > 0 且Uβ/Ua <√3。
同理可得到合成的电压矢量落在其它扇区的等价条件,得出:
Uref落在第Ⅱ扇区的充要条件为:Uβ>0 且Uβ/ Ua>√3;
Uref落在第Ⅲ扇区的充要条件为:Ua<0 ,Uβ> 0 且-Uβ/Ua <√3;
Uref落在第Ⅳ扇区的充要条件为:Ua<0 ,Uβ < 0 且Uβ/Ua <√3;
Uref落在第Ⅴ扇区的充要条件为:Uβ<0 且 -Uβ/Ua>√3;
Uref落在第Ⅵ扇区的充要条件为:Ua>0 ,Uβ<0且-Uβ/Ua <√3;
若进一步分析以上的条件,可看出参考电压矢量 Uref 所在的扇区完全由Uβ、√3Ua-Uβ、-√3Ua-Uβ三式决定,因此令:
再定义,若U1 > 0 ,则 A=1,否则 A=0;
若U2 > 0 ,则B=1,否则 B=0;
若U3 > 0 ,则 C=1,否则 C=0。
可以看出 A,B,C 之间共有八种组合,但由判断扇区的公式可知 A,B,C 不会同时为 1 或同时为 0,所以实际的组合是六种,A,B,C 组合取不同的值对应着不同的扇区,并且是一一对应的,因此完全可以由 A,B,C 的组合判断所在的扇区。为区别六种状态,令 N=4*C+2*B+A,则可以通过下表计算参考电压矢量Uref所在的扇区。
采用上述方法,只需经过简单的加减及逻辑运算即可确定所在的扇区,对于提高系统的响应速度和进行仿真都是很有意义的。如:已知Uref的Uβ>0,√3Ua-Uβ>0,-√3Ua-Uβ<0,即:A=1,B=1,C=0,N=3,所以扇区号为I。
2.基本矢量作用时间计算与三相 PWM 波形的合成
在传统 SVPWM 算法如式(2-34)中用到了空间角度及三角函数,使得直接计算基本电压矢量作用时间变得十分困难。实际上,只要充分利用 Uα 和 Uβ 就可以使计算大为简化。
以 Uref 处在第Ⅰ扇区时进行分析,根据图 2-10 有:
同理可求得Uref在其它扇区中各矢量的作用时间,结果如表2-4所示。表中两个非零矢量作用时间的比例系数为K =3Ts/Udc 。由此可根据N=4*C+2*B+A判断合成矢量所在扇区,然后查表得出两非零矢量的作用时间,最后得出三相PWM波占空比,表2-4可以使SVPWM算法编程简易实现。
由公式(2-38)可知,当两个零电压矢量作用时间为0时,一个PWM周期内非零电压矢量的作用时间最长,此时的合成空间电压矢量幅值最大,由下图2-12可知其幅值最大不会超过图中所示的正六边形边界。而当合成矢量落在该边界之外时,将发生过调制,逆变器输出电压波形将发生失真。在SVPWM调制模式下,逆变器能够输出的最大不失真圆形旋转电压矢量为图2-12所示虚线正六边形的内切圆,其幅值为: (√3/ 2)x(2Udc/ 3) =√3Udc/3 。即逆变器输出的不失真最大正弦相电压幅值为√3Udc /3 ,而若采用三相SPWM调制,逆变器能输出的不失真 最大正弦相电压幅值为Udc/2。显然SVPWM 调制模式下对直流侧电压利用率更高,它们的直流利用率之比为(√3Udc/ 3) /(Udc/ 2) =1.1547 ,即SVPWM算法比SPWM算法的直流电压利用率提高了15.47%。
如图当合成电压矢量端点落在正六边形与外接圆之间时,已发生过调制,输出电压将发生失真,必须采取过调制处理,这里采用一种比例缩小算法。定义每个扇区中先发生的矢量用为Tx,后发生的矢量为 Ty。当 Tx+Ty≤TS时,矢量端点在正六边形之内,不发生过调制;当Tx+Ty>TS时,矢量端点超出正六边形,发生过调制。输出的波形会出现严重的失真,需采取以下措施:
设将电压矢量端点轨迹端点拉回至正六边形内切圆内时两非零矢量作用时间分别为 Tx',Ty',则有比例关系:
完整的Word格式文档51黑下载地址:
SVPWM.docx
(15.8 KB, 下载次数: 29)
|